
2
Function Descriptions

Connectivity Functions . 2-2
NWSMListTSAs - Data Requestor Fn 2-2
NWSMConnectToTSA - Data Requestor Fn 2-4
NWSMTSScanTargetServiceName 2-5
NWSMTSListTargetServices 2-6
NWSMTSGetTargetServiceAddress 2-8
NWSMTSGetTargetServiceType 2-9
NWSMTSConnectToTargetService 2-10

TSA Option Functions . 2-12
NWSMTSGetUnsupportedOptions 2-12
NWSMTSScanTargetServiceResource 2-14
NWSMTSListTSResources 2-16
NWSMTSBuildResourceList 2-18
NWSMTSGetTargetResourceInfo 2-19
NWSMTSGetTargetScanTypeString 2-21
NWSMTSGetTargetSelectionTypeStr 2-23
NWSMTSScanSupportedNameSpaces 2-25
NWSMTSListSupportedNameSpaces 2-27
NWSMTSGetNameSpaceTypeInfo 2-29
NWSMTSGetOpenModeOptionString 2-31

Back Up Functions . 2-34
NWSMTSScanDataSetBegin 2-34
NWSMTSOpenDataSetForBackup 2-41
NWSMTSReadDataSet . 2-44
NWSMTSScanNextDataSet 2-46
NWSMTSScanDataSetEnd 2-49
NWSMTSReturnToParent 2-51
NWSMTSRenameDataSet 2-53
NWSMTSDeleteDataSet 2-55
NWSMTSSetArchiveStatus 2-56

Restore Functions . 2-57
NWSMTSSetRestoreOptions 2-57
NWSMTSIsDataSetExcluded 2-59
NWSMTSOpenDataSetForRestore 2-61
NWSMTSWriteDataSet 2-69

Connection Termination Functions 2-72
NWSMTSReleaseTargetService 2-72
NWSMReleaseTSA . 2-73

Miscellaneous Functions . 2-74
NWSMTSCloseDataSet . 2-74
NWSMFreeNameList - A Utility Fn 2-75
NWSMTSCatDataSetName 2-76
NWSMTSParseDataSetName 2-77
NWSMTSSeparateDataSetName 2-79

Rev. 2.0 2-1

Target Service API

Connectivity Functions

CCODE

NWSMListTSAs - Data Requestor Fn
(STRING scanPattern,

NWSM_NAME_LIST **serviceAgentNameList);

Parameters

scanPattern (INPUT) Passes a search string that contains all upper case

characters (see "Remarks" for a list of legal search patterns).

serviceAgentNameList (OUTPUT) Passes the address of a pointer and returns a pointer to

a list of active TSAs. Do not set this parameter to null. The

calling routine must call NWSMFreeNameList to free this list.

Completion Codes

0x0 Successful

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

Remarks
This function returns a list of active TSAs (see Appendix
"Data Structure Description" for more information about
serviceAgentNameList). A comprehensive list of legal search
patterns is shown below. smdrName and tsaName contains
either a complete or partial name. If a partial name is given,
a wild character must precede or succeed the name.
smdrName is always the name of the file server the TSA
resides on.

Pattern Result
smdrName.tsaName Returns an exact match.
smdrName Returns all TSAs on file server

named smdrName.
*smdrName Returns all TSAs on file server(s)

that have names that end with
smdrName.

smdrName* Return all TSAs on file server(s)
that have names that begin with
smdrName.

smdrName.* Return all TSAs on file server
smdrName.

*.tsaName Return all TSAs named tsaName.
*smdrName.tsaName Return all TSAs named tsaName

on file servers that have names
that end with smdrName.

smdrName.tsaName* Return all TSAs that begin with
tsaName on file server(s)

2-2 Rev. 2.0

Function Description

smdrName.
* Return all available TSAs.
. Return all available TSAs.

Note: Any search that has a wild card in smdrName may
take a long time to return.

The returned name(s) have the following format:

smdrName.tsaName

For example, "DJ.NetWare4.0 File System" is a legal name.
"DJ" is the smdrName and "NetWare 4.0 File System" is the
tsaName. There is no size limit imposed by the TS API on
the names.

Note: If the response from this call is too slow, you can
call NWSMListSMDRs to get a list of available targets.
After selecting the target, call NWSMConnectToTSA to
see if the target has a TSA.

Example

/* This example shows method that may speed up the listings of TSAs */
NWSM_NAME_LIST *smdrList, *serviceAgentNameList = NULL;
STRING scanPattern = "*";
CHAR chosenTarget[120];

NWSMListSMDRs(scanPattern, &smdrList);
/* Have the user select a target. The SMDR name is the same as the target’s
name. Next pass the target’s name to NWSMListTSAs. */
NWSMListTSAs(chosenTarget, &serviceAgentNameList);

See Also
NWSMConnectToTSA
NWSMFreeNameList

Rev. 2.0 2-3

Target Service API

CCODE

NWSMConnectToTSA - Data Requestor Fn
(STRING tsaName,

UINT32 *connection);

Parameters

tsaName (INPUT) Passes an application built string or a name returned by

NWSMListTSAs.

connection (OUTPUT) Passes the address of a UINT32 and returns the

connection information, which is used for all subsequent DR API and

TS API calls.

Completion Codes

0x0 Successful

0xFFFEFFF6 NWSMDR_NO_SUCH_SMDR

0xFFFEFFF7 NWSMDR_TSA_NOT_LOADED

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

Remarks
NWSMConnectToTSA establishes a connection between the

SME and a TSA. This function allows an engine access only
to a TSA, information that the TSA can return (e.g., a list of
target services or connecting to a target service - see
NWSMTSListTargetServices), and information about the

target (see NWSMTSGetTargetServiceType). The function
does not allow access to the target’s data. To access the
target’s data, call NWSMTSConnectToTargetService.

Example

UINT32 connection;
STRING tsaName;

/* Get a list of TSAs and set tsaName to the selected TSA, see NWSMListTSAs. se*/
. . .
NWSMConnectToTSA(tsaName, &connection);

See Also
NWSMReleaseTSA
NWSMTSConnectToTargetService
NWSMListTSAs
NWSMFreeNameList
NWSMTSListTargetServices
NWSMTSGetTargetServiceType

2-4 Rev. 2.0

Function Description

CCODE

NWSMTSScanTargetServiceName
(UINT32 connection,

UINT32 *sequence,

STRING scanPattern,

STRING serviceName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT/OUTPUT) Passes a pointer to a sequence number. Initially,

set this value to zero. If the function returns an error, *sequence is

set to 0xFFFFFFFF.

scanPattern (INPUT) Passes a search string. Legal search patterns are:

"*" Return all names

"*xxxx" Return all names that end with "xxxx"

"xxxx*" Return all names that begin with "xxxx"

"xxxx" Find name "xxxx"

where "xxxx" is one or more characters.

serviceName (OUTPUT) Passes a NWSM_MAX_TARGET_SRVC_NAME_LEN

byte buffer and returns the target’s name. A null string is returned if

no target is found.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD2 NWSMTS_NO_MORE_DATA

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

Prerequisites
The engine must be connected to a TSA.

Remarks
This function returns the name of one target service that is
available through the current TSA. In some cases, such as
NetWare, a TSA services only one target. In other cases a
TSA may service multiple targets (e.g., the DOS TSA). In this
case, this function must be called multiple times to retrieve all
specified target names.

See Also
NWSMTSGetTargetServiceType
NWSMTSListTargetServices

Rev. 2.0 2-5

Target Service API

CCODE

NWSMTSListTargetServices
(UINT32 connection,

STRING scanPattern,

NWSM_NAME_LIST **serviceNameList);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

scanPattern (INPUT) Passes the search string. Legal search patterns are:

"*" Return all names

"*xxxx" Return all names that end with "xxxx"

"xxxx*" Return all names that begin with "xxxx"

"xxxx" Find name "xxxx"

where "xxxx" is one or more characters.

serviceNameList (OUTPUT) Passes the address of a pointer and returns a block of

memory containing a list of available services. The maximum length

of serviceNameList→name,

NWSM_MAX_TARGET_SRVC_NAME_LEN, includes the null

termination character. This parameter cannot be null.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

Prerequisites
The engine must be connected to a TSA.

Remarks
This function returns the names of available target services
through the current TSA. serviceNameList uses the following
data structure:

typedef struct _NWSM_NAME_LIST
{

STRING name;
_NWSM_NAME_LIST *next;

} NWSM_NAME_LIST;

To free the serviceNameList, call NWSMFreeNameList. To

retrieve information about the target call
NWSMTSGetTargetServiceType.

Note: This function is implemented with

2-6 Rev. 2.0

Function Description

NWSMTSScanTargetServiceName.

Example

STRING scanPattern = "*";
NWSM_LIST *serviceNameList = NULL;

/* Connect to a TSA, then make the call */
. . .
NWSMTSListTargetServices(connection, scanPattern, &serviceNameList);

See Also
NWSMTSGetTargetServiceType
NWSMFreeNameList

Rev. 2.0 2-7

Target Service API

CCODE

NWSMTSGetTargetServiceAddress
(UINT32 connection,

STRING targetServiceName,

UINT32 *addressType,

STRING address);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

targetServiceName (INPUT) Passes a name that was returned by

NWSMTSScanTargetServiceName or

NWSMTSListTargetServices.

addressType (OUTPUT) Passes the address of a UINT32 and returns address’

physical address type. The following types are defined:

0x1 SPX

0x2 TCPIP

0x3 ADSP

address (OUTPUT) Passes a buffer and returns the target service’s physical

address in binary form (i.e., a character string is not returned).

Ensure that address’ buffer is long enough to handle all the protocol

address lengths listed below:

SPX 12 bytes

TCPIP 4 bytes

ADSP 4 bytes

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD2 NWSMTS_NO_MORE_DATA

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to the TSA that has access to the target

service.

Remarks
This function returns the physical network address of a target service.

See Also
NWSMTSScanTargetServiceName

NWSMTSListTargetServices

2-8 Rev. 2.0

Function Description

CCODE

NWSMTSGetTargetServiceType
(UINT32 connection,

STRING serviceName,

STRING serviceType,

STRING serviceVersion);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

serviceName (INPUT) Passes a target service name that

NWSMTSScanTargetServiceName or

NWSMTSListTargetServices returned. The string’s buffer size is

NWSM_MAX_TARGET_SRVC_NAME_LEN.

serviceType (OUTPUT) Returns a TSA-defined service type name into a

NWSM_MAX_TARGET_SRVC_TYPE_LEN byte buffer (e.g.,

NetWare, DOS, etc.).

serviceVersion (OUTPUT) Returns a TSA-defined target service version string into

a NWSM_MAX_TARGET_SRVC_VER_LEN long buffer.

Completion Codes

0x0 Successful

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to the TSA.

Remarks
This function returns the target’s type and version
information. The buffer sizes includes a null terminator.

Example

char serviceType[NWSM_MAX_TARGET_SRVC_TYPE_LEN],
serviceVersion[NWSM_MAX_TARGET_SRVC_VER_LEN],
chosenServiceName[NWSM_MAX_TARGET_SRVC_NAMELEN];

/* select the target service, set chosenServiceName to it, then make the call. th
*/
NWSMTSGetTargetServiceType(connection, (STRING)chosenServiceName,

(STRING)serviceType, (STRING)serviceVersion);

See Also
NWSMTSListTargetServices

Rev. 2.0 2-9

Target Service API

CCODE

NWSMTSConnectToTargetService
(UINT32 *connection,

STRING targetServiceName,

STRING targetUserName,

void *authentication);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

targetServiceName (INPUT) Passes a target-service name that

NWSMTSScanTargetServiceName or

NWSMTSListTargetServices returned.

targetUserName (INPUT) Passes the engine user’s name (i.e., the user’s name on a

file server). The maximum buffer size is

NWSM_MAX_TARGET_USER_NAME_LEN bytes.

authentication (INPUT) Passes the authentication necessary to establish a

connection with a target (e.g., a user’s password on a file server). It

is an unencrypted, length preceded (UINT16) string. If no

authentication is passed, set the length to zero. Do not pass a null

pointer.

Note: The SMDR encrypts the password are encrypted if it is

passed between SMDRs.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFD7 NWSMTS_LOGIN_DENIED

0xFFFDFFF9 NWSMTS_CREATE_ERROR

0xFFFEFFF2 NWSMDR_INVALID_PROTOCOL

0xFFFEFFF8 NWSMDR_ENCRYPTION_FAILURE

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine be connected to a TSA that has access to the
desired target.

2-10 Rev. 2.0

Function Description

Remarks
This function connects an engine to the specified target. After
successful connection, the engine can access the target’s data.
The NetWare TSAs have one target service per TSA.

targetUserName contains the user name that allows proper
access to the target’s data. For pre-NetWare 4.0 names, these
are the bindery names. For NetWare 4.0 and above, these are
the names contained in the directory.

Example

char targetServiceName[NWSM_MAX_TARGET_SRVC_NAMELEN],
targetUserName[NWSM_MAX_TARGET_USER_NAME_LEN];

char authentication[30]; /* buffer size set to arbitrary length */

/* Set up authentication */
sprintf(&authentication[2], "%s", "Password");
*(UINT16 *)&authentcation[0] = strlen(&authencation[2]);

/* select a target service name, set user’s name, and make the call. See
NWSMTSListTargetServices to get a service name. */

NWSMTSConnectToTargetService(&connection, (STRING)targetServiceName,
(STRING)targetUserName, &authentication);

See Also
NWSMTSListTargetServices
NWSMReleaseTSA
NWSMListTSAs
NWSMFreeNameList

Rev. 2.0 2-11

Target Service API

TSA Option Functions

CCODE

NWSMTSGetUnsupportedOptions
(UINT32 connectionID,

UINT32 *unsupportedBackupOptions,

UINT32 *unsupportedRestoreOptions);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

unsupportedBackupOptions (OUTPUT) Returns a bit map that represents the TSA’s unsupported

backup options (see "Remarks" for more information).

unsupportedRestoreOptions (OUTPUT) Returns a bit map that represents the TSA’s unsupported

restore options (see the Remarks section for more information).

Completion Codes

0x0 Successful

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFEFFFB NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to the TSA and target service.

Remarks
This function returns the backup/restore options that are not
supported by a TSA. The information is used to modify the
user backup and restore option display. The unsupported
backup options are:

0x01 NWSM_BACK_ACCESS_DATE_TIME
0x02 NWSM_BACK_CREATE_DATE_TIME
0x04 NWSM_BACK_MODIFIED_DATE_TIME
0x08 NWSM_BACK_ARCHIVE_DATE_TIME
0x10 NWSM_BACK_SKIPPED_DATA_SETS

The unsupported restore options are:

0x01 NWSM_RESTORE_NEW_DATA_SET_NAME
0x02 NWSM_RESTORE_CHILD_UPDATE_MODE
0x04 NWSM_RESTORE_PARENT_UPDATE_MODE
0x08 NWSM_RESTORE_PARENT_HANDLE

2-12 Rev. 2.0

Function Description

See Also
NWSMTSConnectToTSA

Rev. 2.0 2-13

Target Service API

CCODE

NWSMTSScanTargetServiceResource
(UINT32 connection,

UINT32 *sequence,

STRING resourceName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT/OUTPUT) Used to sequence through the primary resources.

The engine must initially set this to zero, but it does not increment

the value.

resourceName (OUTPUT) Returns the name of a primary resource. See

"TSA-Specific Resources" in Chapter 1 for more information. The

maximum buffer size is NWSM_MAX_RESOURCE_LEN bytes long.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

Prerequisites
The engine must be connected to the TSA and target service.

TSA Developer
The TSA increments sequence.

Remarks
This function returns the name of a single primary resource
(e.g., volumes). If sequence is set to zero (0), resourceName

returns the resource that represents all the resources on a
target (e.g., if the target service is a NetWare file server, the
first resource name is "File Server"). For NetWare, if this
first resource name is passed to
NWSMTSScanDataSetBegin, all bindery, volumes,
directories, and files are scanned. For more information about
resources, see "TSA-Specific Resources" in Chapter 1.

2-14 Rev. 2.0

Function Description

To get all the primary resources, call this function repeatedly
until NWSMTS_RESOURCE_NAME_NOT_FOUND is
returned.

Before passing a resource name to
NWSMTSScanDataSetBegin, you must convert it to a
NWSM_DATA_SET_NAME_LIST structure. Use the data set
name functions described in Storage Management Services

Utilities Library to help convert this name.

Example

UINT32 sequence = 0;
char resourceName[NWSM_MAX_RESOURCE_LEN];

while (NWSMTSScanTargetServiceResource (connection, &sequence,
(STRING)resourceName) == 0)

{
/* build resource list */

}
. . .

/* Have the user to chose the resource(s) to service */

See Also
NWSMTSScanTargetServiceResource
NWSMTSGetTargetResourceInfo

Rev. 2.0 2-15

Target Service API

CCODE

NWSMTSListTSResources
(UINT32 connection,

NWSM_NAME_LIST **serviceResourceList);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

serviceResourceList (OUTPUT) Passes the address of a pointer and returns a pointer to

a list of valid primary resources on the target service. The buffer

size for serviceResourceList→name is

NWSM_MAX_RESOURCE_LEN. Do not pass the address of a

structure, an allocated buffer, or a null pointer.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC5 NWSMTS_RESOURCE_NAME_NOT_FOUND

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to the TSA and target service.

Remarks
NWSMTSListTSResources returns a list of valid primary
resources. The first entry in the list represents all the
resources on a target (e.g., if the target service is a NetWare
file server, the first resource name is "File Server"). For
NetWare, if this first resource name is passed to
NWSMTSScanDataSetBegin, all bindery, volumes,
directories, and files are scanned. For more information about
resources, see "TSA-Specific Resources" in Chapter 1.

2-16 Rev. 2.0

Function Description

serviceResourceList uses the following data structure:

typedef struct _NWSM_NAME_LIST
{

_NWSM_NAME_LIST *next;
STRING name

1;
} NWSM_NAME_LIST;

Before passing a resource name to
NWSMTSScanDataSetBegin, you must convert it to a
NWSM_DATA_SET_NAME_LIST structure. Use the data set
name functions described in Storage Management Services
Utilities Library to help convert this name.

This function is implemented with
NWSMTSScanTargetServiceResource.

Example

NWSM_NAME_LIST *serviceResourceList = NULL;

NWSMTSListTSResources(connection, &serviceResourceList);

See Also
NWSMFreeNameList
NWSMTSScanTargetServiceResource
NWSMTSGetTargetResourceInfo.

1
The maximum size of name is 48 characters including the null terminator.

Rev. 2.0 2-17

Target Service API

CCODE

NWSMTSBuildResourceList
(UINT32 connection);

Parameters

connection (INPUT) Passes a connection handle that NWSMConnectToTSA
returned.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFE8 NWSMTS_GET_VOL_NAME_SPACE_ERR

0xFFFDFFE9 NWSMTS_GET_SERVER_INFO_ERR

0xFFFDFFED NWSMTS_GET_DATA_STREAM_NAME_ERR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
This function builds a list of primary resources that exists
under the first primary resource (or root). However, the list
does not include the root. Do not call this function if there are
any active scans. This function is used, for example in
NetWare 3.11, to update the resource list when a volume is
either mounted or dismounted.

2-18 Rev. 2.0

Function Description

CCODE

NWSMTSGetTargetResourceInfo
(UINT32 connection,

STRING resourceName,

UINT16 *blockSize,

UINT32 *totalBlocks,

UINT32 *freeBlocks,

NWBOOLEAN *resourceIsRemovable,

UINT32 *purgeableBlocks,

UINT32 *notYetPurgeableBlocks,

UINT32 *migratedSectors,

UINT32 *precompressedSectors,

UINT32 *compressedSectors);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

resourceName (INPUT) Passes a resource name that

NWSMTSScanTargetServiceResource or

NWSMTSListTSResources returned.

blockSize (OUTPUT) Returns the resource’s block size (e.g., disk block size).

totalBlocks (OUTPUT) Returns the total number of blocks on the resource.

freeBlocks (OUTPUT) Returns the number of free blocks on the resource.

resourceIsRemovable (OUTPUT) If set, the resource is removable (e.g., removable hard

disk).

purgeableBlocks (OUTPUT) Returns the total number of blocks that are set aside as

purgeable blocks.

notYetPurgeableBlocks (OUTPUT) Returns the number of blocks that are not marked to be

purged.

migratedSectors (OUTPUT) Returns the number of migrated sectors.

precompressedSectors (OUTPUT) Returns the number of sectors used by all data sets

before they were compressed.

compressedSectors (OUTPUT) Returns the number of sectors used by all compressed

data sets.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD0 NWSMTS_NO_MORE_NAMES

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFDFFE9 NWSMTS_GET_SERVER_INFO_ERR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Rev. 2.0 2-19

Target Service API

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
This function retrieves information about the primary
resource. The function does not return resource information
for all resources listed by
NWSMTSScanTargetServiceResource or
NWSMTSListTSResources. For example, in NetWare 3.11,
the function returns resource information for volumes, but
not for the file server or the bindery.
NWSMTS_INVALID_PARAMETER is returned for resources
that do not have any information.

Example

char resourceName[NWSM_MAX_RESOURCE_LEN];
UINT16 blockSize;
UINT32 totalBlocks, freeBlocks, purgeableBlocks, notYetPurgeableBlocks;
NWBOOLEAN resourceIsRemovable;

/* select a resource name from the resource list and make the call */
NWSMTSGetTargetResourceInfo(connection, (STRING)resourceName, &blockSize,

&totalBlocks, &freeBlocks, &resourceIsRemovable, &purgeableBlocks,
¬YetPurgeableBlocks);

See Also
NWSMTSScanTargetServiceResource
NWSMTSListTSResources

2-20 Rev. 2.0

Function Description

CCODE

NWSMTSGetTargetScanTypeString
(UINT32 connection,

UINT8 typeNumber,

STRING scanTypeString,

UINT32 *required,

UINT32 *disallowed);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

typeNumber (INPUT) Passes a scan type number (1 - 31). See "Remarks" for

more information.

scanTypeString (OUTPUT) Returns a string that describes the scan type number.

The maximum string length is NWSM_MAX_STRING_LEN.

required (OUTPUT) Returns a bit map of all scan types bits that must be set

(in scanType of NWSM_SCAN_CONTROL) if typeNumber is used.

disallowed (OUTPUT) Returns a bit map of all scan types bits that must be

cleared (in scanType of NWSM_SCAN_CONTROL) if typeNumber is

used.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFBF NWSMTS_SCAN_TYPE_NOT_USED

0xFFFDFFDB NWSMTS_INVALID_SCAN_TYPE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
This function returns a string that describes a TSA’s scanning
option and two bit maps that indicate the other scan type
options that must be used or cannot not be used if scan type
typeNumber is used. If a TSA does not support a scan type,
the function returns a null string and a zero completion code
(e.g., the list is not contiguous). To get every scan type, call
this function repetitively until

Rev. 2.0 2-21

Target Service API

NWSMTS_SCAN_TYPE_NOT_USED is returned.

If typeNumber is greater than 31,
NWSMTS_INVALID_SCAN_TYPE is returned.

To indicate the user’s scan type choice(s) to a TSA, set and
clear the appropriate bits of scanType in the
NWSM_SCAN_CONTROL structure when calling
NWSMTSScanDataSetBegin.

For a list of scan types see "NWSM_SCAN_CONTROL" in
Appendix B. For more information about scan types, see
"Scan Type Options" in Chapter 1.

Example

char scanTypeString[NWSM_MAX_STRING_LEN];
UINT8 typeNumber = 0;
UINT32 required, disallowed;

while(NWSMTSGetTargetScanTypeString(connection, &typeNumber,
(STRING)scanTypeString, &required, &disallowed) == 0)

{
/* build scan type list */
. . .
typeNumber++;

}

/* Allow the user to select the scan types. Make sure that corresponding bits
shown by the required and disallow are set or cleared */

. . .

2-22 Rev. 2.0

Function Description

CCODE

NWSMTSGetTargetSelectionTypeStr
(UINT32 connection,

UINT8 typeNumber,

STRING selectionTypeString1,

STRING selectionTypeString2);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

typeNumber (INPUT) Passes a selection type number (1 - 31). For more

information about selection types, see "Selection Type Options" in

Chapter 1.

selectionTypeString1 (OUTPUT) Returns a string (NWSM_MAX_STRING_LEN bytes long)

that describes the selection type number if bit 0 of selectionType is

not set and bit typeNumber of selectionType is set. Otherwise, a

null string is returned. For more information about selectionType,

see "Selection Type Options" in Chapter 1 and Appendix "Data

Structure Description."

selectionTypeString2 (OUTPUT) Returns a string (NWSM_MAX_STRING_LEN bytes long)

that describes the selection type number if bit 0 and bit typeNumber

of selectionType are set. Otherwise, a null string is returned. For

more information about selectionType, see

"NWSM_SELECTION_LIST" in Appendix B.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFBE NWSMTS_SELECTION_TYPE_NOT_USED

0xFFFDFFD9 NWSMTS_INVALID_SELECTION_TYPE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to TSA and target service.

Remarks
This function gets the strings for a selection type, (see
"Selection Type Options" in Chapter 1 for more information).
If a TSA does not support a predefined selection type, a null
string and zero completion code is returned.

Rev. 2.0 2-23

Target Service API

To get every selection type, call this function repetitively until
NWSMTS_SELECTION_TYPE_NOT_USED is returned. For
a list of selection types see "NWSM_SELECTION_LIST" in
Appendix B.

If typeNumber is equal to 0, or greater than 31,
NWSMTS_INVALID_SELECTION_TYPE is returned.

To indicate the user’s desired selection type(s), set the
corresponding bits of selectionType in the
NWSM_SELECTION_LIST structure when calling
NWSMTSScanDataSetBegin.

Example

UINT8 typeNumber = 1;
char selectionTypeString1[NWSM_MAX_STRING_LEN],

selectionTypeString2[NWSM_MAX_STRING_LEN];

while(NWSMTSGetTargetSelectionTypeStr(connection, &typeNumber,
(STRING)selectionTypeString1, (STRING)selectionTypeString2) == 0)

{
/* build selection list here */
/* You may need to keep track of which string represents which bit position.*/

. . .
typeNumber++;

}

2-24 Rev. 2.0

Function Description

CCODE

NWSMTSScanSupportedNameSpaces
(UINT32 connection,

UINT32 *sequence,

STRING resourceName,

UINT32 *nameSpaceType,

STRING nameSpaceName);

Parameters

connection (INPUT) Passes a connection handle that NWSMConnectToTSA
returned.

sequence (INPUT/OUTPUT) Used to sequence through the supported name

spaces. The engine must initially set this to 0.

resourceName (INPUT) Passes a resource name that NWSMTSListTSResources

or NWSMTSScanTargetServiceResource returned.

nameSpaceType (OUTPUT) Returns a number that represents the name space. See

"SMSUTAPI.H" for a list of the name space type constants.

nameSpaceName (OUTPUT) Returns the name of nameSpaceType.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD0 NWSMTS_NO_MORE_NAMES

0xFFFDFFE4 NWSMTS_INVALID_DATA_SET_NAME

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
NWSMTSScanSupportedNameSpaces returns the name of
one name space.

Rev. 2.0 2-25

Target Service API

Example

UINT32 sequence = 0, nameSpaceType;
char resourceName[NWSM_MAX_RESOURCE_LEN], nameSpaceName[NWSM_MAX_STRING_LEN];

while(NWSMTSScanSupportedNameSpaces(connection, &sequence, (STRING)resourceName,
&nameSpaceType, (STRING)nameSpaceName) == 0)
{

/* build name space list */
. . .

}

See Also
NWSMTSListSupportedNameSpaces

2-26 Rev. 2.0

Function Description

CCODE

NWSMTSListSupportedNameSpaces
(UINT32 connection,

STRING resourceName,

NWSM_NAME_LIST **supportedNameSpaces);

Parameters

connection (INPUT) Passes a connection handle that NWSMConnectToTSA
returned.

resourceName (INPUT) Passes a resource name that NWSMTSListTSResources

or NWSMTSScanTargetServiceResource returned.

supportedNameSpaces (OUTPUT) Returns a list of name spaces. Do not pass a null

pointer.

Completion Codes

0x0 Successful (0)

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFCE NWSMTS_NO_SUCH_PROPERTY

0xFFFDFFD0 NWSMTS_NO_MORE_NAMES

0xFFFDFFE4 NWSMTS_INVALID_DATA_SET_NAME

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
This function returns a list of name spaces supported by the
specified resource. Each entry in the list is a name buffer
with the first four bytes (UINT32) set to one of the following
constants:

NWSM_ALL_NAME_SPACES 0xFFFFFFFFL
NWSM_TSA_DEFINED_RESOURCE_TYPE 0xFFFFFFFEL
NWSM_CREATOR_NAME_SPACE 0xFFFFFFFDL
NWSM_DIRECTORY_NAME_SPACE 0xFFFFFFFCL
DOSNameSpace 0x0
MACNameSpace 0x1
NFSNameSpace 0x2

Rev. 2.0 2-27

Target Service API

FTAMNameSpace 0x3
OS2NameSpace 0x4

Following the name space number is a null terminated name
space name. NWSMFreeNameList should be called to
deallocate the memory space.

This function is implemented with
NWSMTSScanSupportedNameSpaces.

Example

STRING resourceName,
NWSM_NAME_LIST *supportedNameSpaces = NULL;
char *nameSpaceName;
UINT32 nameSpaceNumber;

NWSMTSListSupportedNameSpaces(connection, resourceName, &supportedNameSpaces);

nameSpaceNumber = *((UINT32 *)supportedNameSpaces→name);
nameSpaceName = &(supportedNameSpace→name[4]);

See Also
NWSMTSScanSupportedNameSpaces

2-28 Rev. 2.0

Function Description

CCODE

NWSMTSGetNameSpaceTypeInfo
(UINT32 connection,

UINT32 nameSpaceType,

NWBOOLEAN *reverseOrder,

STRING_BUFFER **firstSeparator,

STRING_BUFFER **secondSeparator);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

nameSpaceType (INPUT) Passes a data set’s name space type that

NWSMTSScanSupportedNameSpaces or

NWSMTSListSupportedNameSpaces returned.

reverseOrder (OUTPUT) If reverseOrder is set, the data set name is in reverse

order (i.e., subordinates are to the left rather than to the right).

firstSeparator (OUTPUT) Returns the first separator string.

secondSeparator (OUTPUT) Returns the second separator string.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFE0 NWSMTS_INVALID_NAME_SPACE_TYPE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

Remarks
This function returns the name space information. The
reverse order and separator information are discussed in
Appendix B under "NWSM_SELECTION_LIST" and
"NWSM_SCAN_INFORMATION." The name space
information is used to build data set names for
NWSM_DATA_SET_NAME_LIST and
NWSM_SELECTION_LIST (see the data set name functions
in Storage Management Services Utilities Library).

Rev. 2.0 2-29

Target Service API

The reverse order flag informs the engine if the TSA needs to
build the data set names in reverse order. That is, siblings
are to the left of a parent rather than to the right.

firstSeparator and secondSeparator must point to a valid
structure or null. The function allocates memory when passed
a null or if the structure does not have enough space. To Free
the memory for the separators, call NWSMFreeString (see
Storage Management Services Library).

Example

UINT32 nameSpaceType;
NWBOOLEAN reverseOrder;
STRING_BUFFER *firstSeparator = NULL, *secondSeparator = NULL;
/* The string buffer pointers must be set to NULL, if no buffer is passed */

/* Select the name space type and make the call */
. . .

NWSMTSGetNameSpaceTypeInfo(connection, nameSpaceType, &reverseOrder,
&firstSeparator, &secondSeparator);

2-30 Rev. 2.0

Function Description

CCODE

NWSMTSGetOpenModeOptionString
(UINT32 connection,

UINT8 optionNumber,

STRING optionString);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

optionNumber (INPUT) Passes an option number from 0 through 23 inclusive.

optionString (OUTPUT) Returns a string (NWSM_MAX_STRING_LEN bytes long)

that describes the option.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFCB NWSMTS_OPEN_MODE_TYPE_NOT_USED

0xFFFDFFDE NWSMTS_INVALID_OPEN_MODE_TYPE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

TSA Developer
TSA developers should define their TSA-specific non-numeric
open mode options starting from option number 23 (see the
following table).

Remarks
This function returns TSA-specific non-numeric open mode
options that are common to
NWSMTSOpenDataSetForBackup and
NWSMTSOpenDataSetForRestore. These options allow the
engine to specify how one (as opposed to every) data set is
opened.

optionNumber represents a bit position within the
TSA-specific non-numeric open mode option bit map. The
table below shows the optionNumber values and the constants
that represent it in the left hand side of the table. The right

Rev. 2.0 2-31

Target Service API

hand side of the table contains optionNumber’s corresponding
bit mapped values. These bit map values, combined with
other open modes, are passed to
NWSMTSOpenDataSetForBackup and
NWSMTSOpenDataSetForRestore.

Opt.

No.

Open Mode Option Constant Bit map constant Value

0

1

2

3

4

5

.

.

.

23

NO_DATA_STREAMS

EXCLUDE_EXTENDED_ATTRIBUTE

EXCLUDE_DIRECTORY_TRUSTEES

EXCLUDE_FILE_TRUSTEES

EXCLUDE_VOLUME_RESTRICTIONS

EXCLUDE_SPACE_RESTRICTIONS

NWSM_NO_DATA_STREAMS

NWSM_NO_EXTENDED_ATTRIBUTES

NWSM_NO_PARENT_TRUSTEES

NWSM_NO_CHILD_TRUSTEES

NWSM_NO_VOLUME_RESTRICTIONS

NWSM_NO_DISK_SPACE_RESTRICTIONS

0x00000100

0x00000200

0x00000400

0x00000800

0x00001000

0x00002000

.

.

.

0x80000000

Valid open mode option numbers are from 0 through 23. If
optionNumber is greater than 23,
NWSMTS_INVALID_OPEN_MODE_MODE_TYPE is
returned.

If a TSA does not support a TSA-specific non-numeric open
mode option , NWSMTSGetOpenModeOptionString

returns a null string and a 0 completion code. The function
returns NWSMTS_OPEN_MODE_MODE_TYPE_NOT_USED
when there are no more options defined beyond and including
optionNumber. For more information about open mode
options, see "Open Mode Options" in Chapter 1.

Example

UINT8 optionNumber = 0;
char optionString[(NWSM_MAX_STRING_LEN];

while(NWSMTSGetOpenModeOptionString(connection, optionNumber,
(STRING)optionString) == 0)

{
/* build open option mode list */
. . .
optionNumber++;

}

/* Allow the user to choose how a data set must be opened.
NWSMTSOpenDataSetForBackup and NWSMTSOpenDataSetForRestore each have
particular open modes. These modes should be shown with the modes returned by
NWSMTSGetOpenModeOptionString. */

2-32 Rev. 2.0

Function Description

See Also
NWSMTSOpenDataSetForBackup
NWSMTSOpenDataSetForRestore

Rev. 2.0 2-33

Target Service API

Back Up Functions

CCODE

NWSMTSScanDataSetBegin
(UINT32 connection,

NWSM_DATA_SET_NAME_LIST *resourceName,

NWSM_SCAN_CONTROL *scanControl,

NWSM_SELECTION_LIST *selectionList,

UINT32 *sequence,

NWSM_SCAN_INFORMATION **scanInformation,

NWSM_DATA_SET_NAME_LIST **dataSetNames);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

resourceName (INPUT) Passes the resource’s name to be scanned (the starting

point for the scan). resourceName can be obtained from

dataSetNames of a previous scan or from these two functions:

NWSMTSScanTargetServiceResource or

NWSMTSListTSResources. The "Data Set Name Functions" can

be used to construct the resource name (see "TSA-Specific

Resources" in Chapter 1and Storage Management Services Utility

Library for more information).

Note: The name space type of resourceName should be

NWSM_TSA_DEFINED_RESOURCE_TYPE

scanControl (INPUT) Passes a pointer to a scan control structure. If the pointer

is null, the TSA scans the target as if the structure’s values are 0

(see "NWSM_SCAN_CONTROL" in Appendix "Data Structure

Description" for more information).

Note: scanControl’s settings apply to all data sets in a session.

selectionList (INPUT) Passes a pointer to a selection list structure. To scan for

all data sets, pass a null pointer; otherwise it points to a list

containing the scanning patterns or explicit data set names to filter

on. See "Selection Type Options" in Chapter 1 and

"NWSM_SELECTION_LIST" in Appendix "Data Structure

Description" for more information.

sequence (OUTPUT) Passes a pointer to a sequence value. sequence is

defined by the TSA and does not need to be initialized to any value.

2-34 Rev. 2.0

Function Description

scanInformation

(OUTPUT) Returns a data set’s scan information (data set

information). This information is normally used for display purposes

only. Set this parameter to one of three values:

null Do not return any scan information.

*scanInformation = null The function allocates memory for the

structure and returns the scan

information.

*scanInformation = address of allocated structure

The function returns the scan

information. If there is not enough

room for the information, a larger

memory space is allocated.

See Appendix, "Data Structure Description" for more information

about this structure.

dataSetNames (OUTPUT) Returns a list of names for one data set. Each entry has

a name space type and the data set’s name as it appears under

that name space. The first entry in this list, is always the name

space that created the data set. See Appendix, "Data Structure

Description" for more information about this structure. Set

dataSetNames to one of two values:

*dataSetNames = null The function allocates memory for the

structure and returns the name space

information.

*dataSetNames = address of allocated structure

The function returns the name space

information. If there is not enough

room for the information, a larger

memory space is allocated.

To access the data set name see "Data Set Name Functions" in

Storage Management Services Utilities Library. For more

information, see "NWSM_DATA_SET_NAME_LIST" in Appendix

"Data Structure Description."

Rev. 2.0 2-35

Target Service API

Completion Codes

0x0 Successful

0xFFFBFFFB NWSMUT_OUT_OF_MEMORY

0xFFFBFFFC NWSMUT_NO_MORE_NAMES

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

0xFFFBFFFF NWSMUT_INVALID_HANDLE

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFDA NWSMTS_INVALID_SEL_LIST_ENTRY

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF2 NWSMTS_DATA_SET_NOT_FOUND

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The engine must be connected to a TSA and target service.

TSA Developer
To build dataSetNames, the "Data Set Name Functions" listed
in Storage Management Services Library can be used. The
scan information and data set names are known as the "data
set information" by SIDF.

SME Developer
The SME can put scanInformation and dataSetNames into an
SIDF transfer buffer by using NWSMSetRecordHeader and
NWSMUpdateRecordHeader (see Storage Management

Services Utilities Library). The scan information and data set
names are known as the "data set information" by SIDF.

Remarks
NWSMTSScanDataSetBegin starts the scan for all specified
data sets under resourceName. The data sets to scan are
specified by scanControl and selectionList. The function
returns the first data set found or the parent of a data set (see
"Scanning Settings" in Appendix B). For further information
about scanning see "Scanning" in Chapter 1.

2-36 Rev. 2.0

Function Description

To build resourceName and selectionList the "Data Set Name
Functions" listed in Storage Management Services Library can
be used. For NetWare 3.x and 4.0, wild card matching are
allowed for parents and children. For NetWare 2.x, 3.x, and
4.0 all children of resourceName are scanned according to the
information in scanControl and selectionList.

Special values for resourceName are "ERROR LOG" and
"SKIPPED DATA SETS". "ERROR LOG" references an
ASCII file, which list the errors that occurred during the
back-up/restore session.

"SKIPPED DATA SETS" is a binary file, which lists the data
sets that could not be backed up during the back up session.
Each entry in the skipped data sets file is an
NWSM_DATA_SET_NAME_LIST structure, but without the
buffer size information. The reserved field of each entry
contains an error code that describes the reason for skipping
the data set.

To read the skipped data set file or the error log file, perform
the following steps:

1. Set resourceName to "SKIPPED DATA SETS".

2. Call NWSMTSScanDataSetBegin and receive the name
of the file in dataSetNames.

3. Open the file with
NWSMTSOpenDataSetForBackup.

4. Read the file with NWSMTSReadDataSet.

5. Close the file with NWSMTSCloseDataSet.

6. End the read file session by calling
NWSMTSScanDataSetEnd.

If resourceName is "ERROR LOG" or "SKIPPED DATA
SETS", scanInformation and dataSetNames will not contain
any valid information.

Concurrent scans can be initiated by calling
NWSMTSScanDataSetBegin once for each resource name.
If concurrent scans are used, make sure that the data area
covered by a resource does not overlap the area covered by
another resource. Resources that overlap each other will
cause a duplication of effort. Each scan started must be
terminated by a scanning error or by calling
NWSMTSScanDataSetEnd.

Rev. 2.0 2-37

Target Service API

Note: Each scan has a unique sequence. If the SME
allows concurrent scans, it must keep track of each
sequence.

Besides looking for data sets to back up,
NWSMTSScanDataSetBegin can also be used to check for
the presence of a data set(s). For example, it can be used to
scan for data sets to be deleted. Just set the scan control and
selection list structures, call the function, and pass sequence to
NWSMTSDeleteDataSet. NWSMTSRenameDataSet

works in a similar fashion.

2-38 Rev. 2.0

Function Description

Example

#define MAX_BUFFER_SIZE 1024
NWSM_DATA_SET_NAME_LIST *resourceName, *dataSetNames = NULL;
NWSM_SCAN_CONTROL *scanControl, *scanInformation = NULL;
NWSM_SELECTION_LIST *selectionList;
UINT32 sequence, dataSetHandle, mode, bytesRead;
CCODE ccode = 0;
char tsaData[MAX_BUFFER_SIZE];
NWSM_RECORD_HEADER_INFO recordHeaderInfo;

/* build resourceName, scanControl, and selectionList */
. . .

/* begin the scan */
NWSMTSScanDataSetBegin(connection, resourceName, scanControl, selectionList,

&sequence, &scanInformation, &dataSetNames);

/* The open mode can be specified for each data set, but to keep things simple,
we will set mode to apply to all data sets. */
mode = 0;

while(NWSMTSOpenDataSetForBackup(connection, sequence, mode, &dataSetHandle)
== 0)

{
/* Here we assume that NWSMTSReadDataSet retrieves all the data on the
first call. */
NWSMTSReadDataSet(connection, dataSetHandle, MAX_BUFFER_SIZE, &bytesRead,

(BUFFERPTR)tsaData);

/* Put the data set information and data set data into a record and then
into a transfer buffer. Here, we assume that the transfer buffer is
defined somewhere else (see the Storage Device API document’s
NWSMSDOpenSessionForWriting) */
recordHeaderInfo.isSubRecord = FALSE;
recordHeaderInfo→dataSetName = dataSetNames;
recordHeaderinfo→scanInformation = scanInformation;
recordHeaderinfo.headerSize = sizeof(NWSM_RECORD_HEADER_INFO);
recordHeaderinfo.recordSize = bytesRead;
recordHeaderinfo.archiveDateAndTime = todaysDateAndTime;

/* The function below builds the record and puts it into a transfer buffer
*/
NWSMSetRecordHeader(transferBuffer, transferBufferLeft, tsaData, TRUE,

&recordHeaderInfo);

/* If the transfer buffer is full, reset and update the record header and
send the transfer buffer to SDI. SDI will write the transfer buffer to the
media. */
NWSMSetRecordHeader(transferBuffer, transferBufferLeft, tsaData, TRUE,

&recordHeaderInfo);
NWSMUpdateRecordHeader(&recordHeaderInfo);
. . .

/* close the data set and get the next one */
NWSMTSCloseDataSet(connection, &dataSetHandle);
NWSMTSScanNextDataSet(connection, &sequence, &scanInformation,

&dataSetNames);
}

/* if the scanning functions did not return and error, end the scan */
NWSMTSScanDataSetEnd(connection, &sequence, &scanInformation, &dataSetNames);

Rev. 2.0 2-39

Target Service API

See Also

NWSMTSListTSResources
NWSMTSScanTargetServiceResource
NWSMTSScanNextDataSet
NWSMTSScanDataSetEnd.
NWSMTSDeleteDataSet
NWSMTSRenameDataSet

2-40 Rev. 2.0

Function Description

CCODE

NWSMTSOpenDataSetForBackup
(UINT32 connection,

UINT32 sequence,

UINT32 mode,

UINT32 *dataSetHandle);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT) Passes the sequence number returned by

NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet.

mode (INPUT) Passes zero or one numeric open modes and zero or more

TSA-specific-non-numeric open modes (see "Remarks" for more

information).

dataSetHandle (OUTPUT) Returns a handle used for subsequent

NWSMTSReadDataSet or NWSMTSCloseDataSet calls.

Completion Codes

0x0 Successful

0xFFFDFFB5 NWSMTS_WRITE_ERROR

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFCC NWSMTS_OPEN_ERROR

0xFFFDFFCD NWSMTS_OPEN_DATA_STREAM_ERR

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN

0xFFFDFFE7 NWSMTS_DATA_SET_IN_USE

0xFFFDFFF6 NWSMTS_DATA_SET_EXECUTE_ONLY

0xFFFDFFFB NWSMTS_CLOSE_BINDERY_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
NWSMTSScanDataSetBegin initiated the scan.

Rev. 2.0 2-41

Target Service API

TSA Developer
It is the TSA’s responsibility to ensure that all attributes (e.g.,
last access date and time) are not altered on the target service
during the back up session.

Remarks
This function opens the target’s data set. To close the data
set call NWSMTSCloseDataSet. mode allows the engine to
define how the data set is opened and what kind of data is
returned for the specified data set. The following lists show
the open modes (see Chapter 1, "Open Mode Options" for more
information about open modes):

Numeric-open modes for back up - Select zero or one of

the following modes. If no mode is selected, the data set is
opened "write deny all":

NWSM_USE_LOCK_MODE_IF_DW_FAILS (0x0001)
Attempt to open the data set with "deny write" access
rights. If this fails, open the data set with read only
and lock access rights.

NWSM_NO_LOCK_NO_PROTECTION (0x0002)
Attempt to open the data set with "deny write," lock,
and protection access rights. If the attempt fails, open
the data set anyway. The data set’s state is not
guaranteed if this mode is used.

NWSM_OPEN_READ_ONLY (0x0003)
Open the data set with read only access rights. Do not
attempt to open the data set with any lock or
protection access rights. The data set’s state is not
guaranteed if this mode is used.

TSA-specific-non-numeric open modes - Select zero or
more of the following open modes. These modes can be ORed
with one another and with one numeric-open mode.
NWSMTSGetOpenModeOptionString indicates which
modes are supported by the TSA.

NWSM_NO_DATA_STREAMS
NWSMTSReadDataSet performs a normal back up on
the data set, but does not back up data stream(s).

NWSM_NO_EXTENDED_ATTRIBUTES
This mode does not back up the data set’s extended
attributes.

2-42 Rev. 2.0

Function Description

NWSM_NO_PARENT_TRUSTEES
If the data set is a parent, do not back up its trustee(s)
information.

NWSM_NO_CHILD_TRUSTEES
If the data set is a child, do not back up its trustee(s)
information.

NWSM_NO_VOLUME_RESTRICTIONS
This mode does not back up any volume restrictions

NWSM_NO_DISK_SPACE_RESTRICTIONS
This mode does not back up the disk space restrictions.

Example

See NWSMTSScanDataSetBegin

See Also
NWSMTSCloseDataSet
NWSMTSScanDataSetBegin
NWSMTSScanNextDataSet
NWSMTSSetRestoreOptions

Rev. 2.0 2-43

Target Service API

CCODE

NWSMTSReadDataSet
(UINT32 connection,

UINT32 dataSetHandle,

UINT32 bytesToRead,

UINT32 *bytesRead,

BUFFERPTR buffer);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

dataSetHandle (INPUT) Passes the handle returned by

NWSMTSOpenDataSetForBackup.

bytesToRead (INPUT) Passes the number of bytes to read.

bytesRead (OUTPUT) Returns the number of bytes read.

buffer (OUTPUT) Returns an SIDF data set data.

Completion Codes

0x0 Successful

0xFFFDFFB5 NWSMTS_WRITE_ERROR

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC6 NWSMTS_READ_ERROR

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFE5 NWSMTS_INVALID_DATA_SET_HANDLE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF9 NWSMTS_CREATE_ERROR

0xFFFDFFFF NWSMTS_ACCESS_DENIED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
NWSMTSScanDataSetBegin initiated the scan and

NWSMTSOpenDataSetForBackup opened the data set.

TSA Developer
This function formats the data set according to SIDF and puts
it into buffer. Also, this function must not modify any of the
data set’s access attributes (e.g., last access).

2-44 Rev. 2.0

Function Description

SME Developer
The data returned in buffer is the data set data mentioned in
System Independent Data Format. The engine formats the
scan information and data set names (both are jointly known
as data set information under SIDF) and places the result and
the data set data into a record and then into a transfer buffer.
NWSMSetRecordHeader and
NWSMUpdateRecordHeader can be used to put the

information into a record and transfer buffer (see Storage
Management Services Library).

Remarks
NWSMTSReadDataSet reads the prepared data into data.
To get all of the data set, call this function repeatedly until
bytesRead is less than bytesToRead.

Example

See NWSMTSScanDataSetBegin

See Also

NWSMTSOpenDataSetForBackup

Rev. 2.0 2-45

Target Service API

CCODE

NWSMTSScanNextDataSet
(UINT32 connection,

UINT32 *sequence,

NWSM_SCAN_INFORMATION **scanInformation,

NWSM_DATA_SET_NAME_LIST **dataSetNames);

Parameters

connection (INPUT) Passes the connection information NWSMConnectToTSA
returned.

sequence (INPUT/OUTPUT) Passes the address of sequence.

NWSMTSScanDataSetBegin initialized sequence.

scanInformation (OUTPUT) Returns a data set’s scan information. Set this

parameter to one of the following three values:

null Do not return any scan information.

*scanInformation = null The function allocates memory for the

structure and returns the scan

information.

*scanInformation = address of allocated structure

The function returns the scan

information. If there is not enough

room for the information, a larger

memory space is allocated.

For more information about this structure see

"NWSM_SCAN_INFORMATION" in Appendix B.

dataSetNames (OUTPUT) Returns a list of names for one data set. Each entry has

a name space type and the data set’s name as it appears under

that name space. The first entry in this list, is always the name

space that created the data set. See Appendix, "Data Structure

Description" for more information about this structure. Set

dataSetNames to one of two values:

*dataSetNames = null The function allocates memory for the

structure and returns the name space

information.

*dataSetNames = address of allocated structure

The function returns the name space

information. If there is not enough

room for the information, a larger

memory space is allocated.

To access the data set name see "Data Set Name Functions" in

Storage Management Services Utilities Library. For more

information, see "NWSM_DATA_SET_NAME_LIST" in Appendix

"Data Structure Description."

2-46 Rev. 2.0

Function Description

Completion Codes

0x0 Successful

0xFFFBFFFB NWSMUT_OUT_OF_MEMORY

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC4 NWSMTS_SCAN_ERROR

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFD1 NWSMTS_NO_MORE_DATA_SETS

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFEB NWSMTS_GET_NAME_SPACE_ENTRY_ERR

0xFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
The scan was initiated by NWSMTSScanDataSetBegin.

Remarks
This function continues the scan started by
NWSMTSScanDataSetBegin and retrieves the next data
set. scanInformation and dataSetNames may be reallocated
by NWSMTSScanNextDataSet if they are not large enough.

If there are no more data sets to scan,
NWSMTSScanNextDataSet returns
NWSMTS_NO_MORE_DATA_SETS, sets sequence to zero,
and frees dataSetNames and scanInformation.

Calling NWSMTSScanNextDataSet after it returns
NWSMTS_NO_MORE_DATA_SETS is invalid, unless
sequence from another NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet call is passed. If
NWSMTSScanNextDataSet is called after
NWSMTS_NO_MORE_DATA_SETS is returned,
NWSMTS_INVALID_SEQUENCE_NUMBER is returned.

Rev. 2.0 2-47

Target Service API

Example

See NWSMTSScanDataSetBegin

See Also
NWSMTSScanDataSetBegin

2-48 Rev. 2.0

Function Description

CCODE

NWSMTSScanDataSetEnd
(UINT32 connection,

UINT32, *sequence,

NWSM_SCAN_INFORMATION **scanInformation,

NWSM_DATA_SET_NAME_LIST **dataSetNames);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT/OUTPUT) Passes a sequence number that was returned by

NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet.

scanInformation (INPUT) Passes a pointer to the scan information to be freed.

dataSetNames (INPUT) Passes a pointer to the data set names to be freed.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDLE

0xFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
A scan was initiated by NWSMTSScanDataSetBegin.

TSA Developers
This function must notify the server/service to free its state
information tables.

Remarks
This function frees scanInformation and dataSetNames, sets
the pointers to null, and sets sequence to zero.
NWSMTSScanDataSetEnd must be called to terminate a
scan prematurely. However, do not call this function if
NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet returned an error.

Rev. 2.0 2-49

Target Service API

Example

See NWSMTSScanDataSetBegin

See Also
NWSMTSScanDataSetBegin
NWSMTSScanNextDataSet.

2-50 Rev. 2.0

Function Description

CCODE

NWSMTSReturnToParent
(UINT32 connection,

UINT32 *sequence);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT) Passes the sequence number that

NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet
returned.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF3 NWSMTS_DATA_SET_IS_OPEN

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

Prerequisites
A scan was initiated by NWSMTSScanDataSetBegin.

Remarks
This function terminates the current scan, traverses the tree
one level up, and continues the scan in the next parent of the
current parent. This function is used during a scan, when the
engine decides that it does not need to scan the current parent
any further. For example, Figure 2-1 shows a file system tree
(we are assuming that the scan moves from top to bottom and
left to right). If this function is called while the scan is in
parent E, the scan is moved to parent G.

Rev. 2.0 2-51

Target Service API

Ba b D c H

Ed e

F

G

h i j

k I

l m n

C

gf

AabcBdeCfgDEFGhijHkIlmnScanning Order:

A

Figure 2-1. Continuing the Scan

See Also
NWSMTSScanDataSetBegin
NWSMTSScanNextDataSet

2-52 Rev. 2.0

Function Description

CCODE

NWSMTSRenameDataSet
(UINT32 connection,

UINT32 sequence,

UINT32 nameSpaceType,

STRING newDataSetName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT) Passes a data set’s sequence number. The number is

returned by NWSMTSScanDataSetBegin or

NWSMTSScanNextDataSet.

nameSpaceType (INPUT) Passes newDataSetName’s name space type

(nameSpaceType indicates the path format used by

newDataSetName). The name space type can be retrieved from the

NWSM_DATA_SET_NAME_LIST structure that

NWSMTSScanDataSetBegin or NWSMTSScanNextDataSet.

newDataSetName (INPUT) Passes the data set’s new name. newDataSetName must

only contain the terminal node name (i.e., the last name node in a

path). Do not set this parameter to null.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFDFFEB NWSMTS_GET_NAME_SPACE_ENTRY_ERR

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
NWSMTSScanDataSetBegin or
NWSMTSScanNextDataSet returned a valid sequence
number.

Remarks
NWSMTSRenameDataSet provides an engine the ability to
rename existing data sets before restoring them. This
function cannot relocate a data set to another directory or

Rev. 2.0 2-53

Target Service API

logical location. To move a data set to another location, see
NWSMTSOpenDataSetForRestore.

Note: This function may not apply to all target services,

because some services may not have a file system or the
ability to rename a data set.

See Also
NWSMTSScanDataSetBegin
NWSMTSScanNextDataSet

2-54 Rev. 2.0

Function Description

CCODE

NWSMTSDeleteDataSet
(UINT32 connection,

UINT32 sequence);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

sequence (INPUT) Passes a data set’s sequence number. The number was

returned by NWSMTSScanDataSetBegin or

NWSMTSScanNextDataSet.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD8 NWSMTS_INVALID_SEQUENCE_NUMBER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF1 NWSMTS_DELETE_ERR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
One of the scanning function returned a valid sequence
number.

Remarks
NWSMTSDeleteDataSet removes the data set specified by

connection and sequence.

Note: The data set specified by connection and sequence
cannot contain wild cards.

See Also
NWSMTSScanDataSetBegin
NWSMTSScanNextDataSet

Rev. 2.0 2-55

Target Service API

CCODE

NWSMTSSetArchiveStatus
(UINT32 connection,

UINT32 dataSetHandle,

UINT32 setFlag,

UINT32 archivedDateAndTime);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

dataSetHandle (INPUT) Passes a handle that NWSMTSOpenDataSetForBackup

or NWSMTSOpenDataSetForRestore returned.

setFlag (INPUT) Passes zero or more of the following flags (there is no

default):

NWSM_CLEAR_MODIFY_FLAG: 0x0001

NWSM_SET_ARCHIVE_DATE_AND_TIME: 0x0002

NWSM_SET_ARCHIVER_ID: 0x0004

archivedDateAndTime (INPUT) Passes a DOS packed date and time value (see "DOS

Date and Time Functions" in Storage Management Services Utilities

Library for more information).

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFBD NWSMTS_SET_FILE_INFO_ERR

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks
NWSMTSSetArchiveStatus should be called before closing
the data set.

Note: NWSMTSOpenDataSetForBackup or

NWSMTSReadDataSet does not alter the access date
and time.

2-56 Rev. 2.0

Function Description

Restore Functions

CCODE

NWSMTSSetRestoreOptions
(UINT32 connection,

NWBOOLEAN checkCRC,

NWBOOLEAN dontCheckSelectionList,

NWSM_SELECTION_LIST *selectionList);

Parameters

connection (INPUT) Passes the connection information returned by

NWSMConnectToTSA.

checkCRC (INPUT) If set, checkCRC causes the TSA to check the data set’s

CRC. This enhances data integrity, but decreases performance

slightly. If no CRC was generated, no checking is done.

dontCheckSelectionList (INPUT) dontCheckSelectionList affects how NWSMTSWriteDataSet
functions. If set to FALSE, dontCheckSelectionList tells

NWSMTSWriteDataSet to compare the received data set name

against selectionList to see if it is included in or excluded from the

restore session. Setting dontCheckSelectionList to TRUE, tells

NWSMTSWriteDataSet to ignore selectionList because the engine

knows the data set is included in the restore session (the engine

previously called NWSMTSIsDataSetExcluded). See "Remarks" for

more information.

selectionList (INPUT) Passes a pointer to a selection list structure containing a

list of data sets to restore. Passing a null clears the previous

selection list. See "Selection Type Options" in Chapter 1 and

"NWSM_SELECTION_LIST" in appendix "Data Structure

Description" for more information. The "Data Set Name Functions"

described in Storage Management Services Library can be used to

help create this list.

Completion Codes

0x0 Successful

0xFFFBFFFB NWSMUT_OUT_OF_MEMORY

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

0xFFFBFFFF NWSMUT_INVALID_HANDLE

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFDA NWSMTS_INVALID_SEL_LIST_ENTRY

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

Rev. 2.0 2-57

Target Service API

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
This function must be called before
NWSMTSOpenDataSetForRestore,
NWSMTSIsDataSetExcluded, and NWSMTSWriteDataSet

is called.

Remarks
This function sets the restore selection list for the session and
allows the engine to determine the mechanism used to restore
a data set (the description for dontCheckSelectionList will
discuss this further). selectionList is used internally by
NWSMTSIsDataSetExcluded and NWSMTSWriteDataSet.

NWSMTSSetRestoreOptions can be called more than once;
however, the previous selectionList will be replaced. This
function rebuilds the resource list (e.g., volume information
under NetWare), that was calculated at the time of
connection. The list is rebuilt because a volume(s) may have
been mounted or dismounted, or the volume’s name space
information may have changed. If the engine wants the
resource list rebuilt, set selectionList to null or call
NWSMTSBuildResourceList.

NWSMTSIsDataSetExcluded and NWSMTSWriteDataSet

compare the same data set against selectionList. To prevent
this double checking, when both functions are used, set
dontCheckSelectionList to TRUE. In this manner, only
NWSMTSIsDataSetExcluded compares the data set against
selectionList. If NWSMTSIsDataSetExcluded is not used,

set dontCheckSelectionList to FALSE.

See Also
NWSMTSIsDataSetExcluded
NWSMTSOpenDataSetForRestore
NWSMTSWriteDataSet

2-58 Rev. 2.0

Function Description

CCODE

NWSMTSIsDataSetExcluded
(UINT32 connection,

NWBOOLEAN isParent,

NWSM_DATA_SET_NAME_LIST **dataSetName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

isParent (INPUT) Passes a flag that indicates whether the data is a parent or

a child.

dataSetName (INPUT) Passes a data set’s fully qualified path.

Completion Codes

0x0 FALSE

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
NWSMTSSetRestoreOptions was called and its parameter,
dontCheckSelectionList, was set to TRUE.

TSA Developer
To build dataSetName the "Data Set Name Functions" listed
in Storage Management Services Library can be used.

Remarks
This function uses the selection list passed in by
NWSMTSSetRestoreOptions to decide if the data set is
excluded. This function is used to help speed up the restore
process and does not have to be used. For more information,
see NWSMTSSetRestoreOptions remarks section.

dataSetName can be can be taken from a data base, from a
transfer buffer received from SDI, etc. dataSetName must be
a fully qualified path.

Rev. 2.0 2-59

Target Service API

If the data set name is not already in a
NWSMTS_DATA_SET_NAME_LIST structure, the "Data Set
Name Functions" shown in Storage Management Services

Utilities Library can be used.

See Also
NWSMTSSetRestoreOptions

2-60 Rev. 2.0

Function Description

CCODE

NWSMTSOpenDataSetForRestore
(UINT32 connection,

UINT32 parentHandle,

NWSM_DATA_SET_NAME_LIST *newDataSetName,

UINT32 mode,

UINT32 *dataSetHandle);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

parentHandle (INPUT) Passes a handle (from a previous

NWSMTSOpenDataSetForRestore call) to the parent data set. If

the handle is 0, the data set must contain a full path.

newDataSetName (INPUT)(Optional) Passes a data set’s new name. Set this

parameter to null to keep the data set’s original name.

newDataSetName must be set if parentHandle is set to zero and the

data set does not contain a full path name. To construct the data

set name the engine can use the data set name functions described

in Storage Management Services Utilities Library. For more

information about this structure, see

"NWSM_DATA_SET_NAME_LIST" in Appendix B.

mode (INPUT) Passes the open mode(s). See "Remarks" for more

information.

dataSetHandle (OUTPUT) Returns a data set handle that is used by

NWSMTSWriteDataSet, NWSMTSCloseDataSet, and

NWSMTSSetArchiveStatus.

Rev. 2.0 2-61

Target Service API

Completion Codes

0x0 Successful

0xFFFBFFFB NWSMUT_OUT_OF_MEMORY

0xFFFBFFFC NWSMUT_NO_MORE_NAMES

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFD0 NWSMTS_NO_MORE_NAMES

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFDD NWSMTS_INVALID_PARAMETER

0xFFFDFFE0 NWSMTS_INVALID_NAME_SPACE_TYPE

0xFFFDFFE5 NWSMTS_INVALID_DATA_SET_HANDLE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

SME Developer
To build newDataSetName the "Data Set Name Functions"
listed in Storage Management Services Library can be used.

Remarks
This function initializes a data set handle.

Full Paths And Validation
To restore a data set, a fully qualified data set name2 is
required. A fully qualified path consists of one of the
following:

• A parent data set handle and a terminal node name.

or

• A fully qualified data set name.

2
Defined in glossary

2-62 Rev. 2.0

Function Description

NWSMTSOpenDataSetForRestore uses one of three
options to construct a path for the data set from
parentHandle, newDataSetName, and/or the data set name
contained in the data set as follows:

1. If parentHandle is specified,
NWSMTSOpenDataSetForRestore ignores all path
information contained in newDataSetName and in the
data set data. However, the function uses the terminal
node name contained in newDataSetName or in the
data set if parentHandle does not have one.

2. If newDataSetName is specified, the function overrides
the data set’s name contained in data set data.

3. If neither parentHandle or newDataSetName are
specified, the data set data must contain a fully
qualified data set name.

In some cases NWSMTSOpenDataSetForRestore cannot
verify if the constructed full path is valid because it does not
have access to the data set’s real full path. This real full path
is in data set data. Since this function does not have access
to the data set data, it must defer the constructed path’s
validation to NWSMTSWriteDataSet, which has access to
the data set data. If this is the case,
NWSMTSOpenDataSetForRestore still returns
successfully. If the real full path is buried deep within the
data set data, the engine may have to call
NWSMTSWriteDataSet several times before the constructed
path can be validated.

Open Modes
The open modes, although set here, are used by
NWSMTSWriteDataSet to determine how to write the data
set. The open modes are defined as follows:

• Numeric open modes for restore (defined by this
function). Choose one or more modes from this list:

NWSM_OVERWRITE_DATA_SET
NWSMTSWriteDataSet creates the data set if it
does not exist or replaces if it does exist.

NWSM_DO_NOT_OVERWRITE_DATA_SET
NWSMTSWriteDataSet creates the data set if it
does not exist, and returns
NWSM_DATA_SET_ALREADY_EXIST, if it does
exist. In this mode the engine must call this

Rev. 2.0 2-63

Target Service API

function repetitively until it returns a non-zero
completion code. See NWSMTSWriteDataSet for
more information.

Caution:
NWSM_DO_NOT_OVERWRITE_DATA_SET has a
lower precedence than excluding or including a data
set. That is, if a data set is marked as do not
overwrite and is also marked as included in the
selection list, the data set will be overwritten. To
avoid overwriting an included data set, it must be
excluded.

NWSM_CREATE_PARENT_HANDLE
NWSMTSWriteDataSet creates the parent handle,
but will not overwrite an existing data set. This
mode is similar to
NWSM_DO_NOT_OVERWRITE_DATA_SET,
except that NWSM_VALID_PARENT_HANDLE is
returned if the data set exists.

NWSM_UPDATE_DATA_SET
If the data set on the media is newer than the one
on the target, the TSA restore it.

• Non-numeric open modes for restore (defined by this
function). Zero or one or more modes can be chosen from
this list.

NWSM_CLEAR_MODIFY_FLAG_RESTORE
Clear a data set’s modify flag after it is restored.

NWSM_RESTORE_MODIFY_FLAG
Restore the data set’s modify flag to what it was at
the time it was backed up.

Note: If neither option is chosen, the data set’s

modified flag is set.

• TSA-specific non-numeric open modes.
NWSMTSGetOpenModeOptionString indicates the

supported by a TSA. Zero or more modes can be chosen
from this list:

NWSM_NO_DATA_STREAMS
NWSMTSWriteDataSet performs a normal restore
on the data set, but does not overwrite existing
data streams.

NWSM_NO_EXTENDED_ATTRIBUTES

2-64 Rev. 2.0

Function Description

This mode does not restore the data set’s extended
attributes.

NWSM_NO_PARENT_TRUSTEES
This mode does not restore the parent’s trustee
information.

NWSM_NO_CHILD_TRUSTEES
This mode does not restore a child’s trustee
information.

NWSM_NO_VOLUME_RESTRICTIONS
This mode does not restore any volume restrictions

NWSM_NO_DISK_SPACE_RESTRICTIONS
This mode does not restore the disk space
restrictions.

In summary, when selecting the restore open mode options
select zero or one of the following modes:

NWSM_OVERWRITE_DATA_SET
NWSM_DO_NOT_OVERWRITE_DATA_SET
NWSM_CREATE_PARENT_HANDLE
NWSM_UPDATE_DATA_SET

plus (ORed with) zero or one of the following modes:
NWSM_CLEAR_MODIFY_FLAG_RESTORE
NWSM_RESTORE_MODIFY_FLAG
NWSM_NO_DATA_STREAMS
NWSM_NO_EXTENDED_ATTRIBUTES
NWSM_NO_PARENT_TRUSTEES
NWSM_NO_CHILD_TRUSTEES
NWSM_NO_VOLUME_RESTRICTIONS
NWSM_NO_DISK_SPACE_RESTRICTIONS

Misplaced Data Sets
Under certain conditions a data set will not be restored to its
original parent when using the data set’s full path. The
problem stems from backing up or restoring a data set of one
name space to a parent of another name space and using the
data set’s full path stored on the media. The following two
examples illustrate this problem. In the first example the
engine backs up and restores a data set whose creator name
space maximum data set name length is shorter than its
parent. The following events happen.

1. Backup data set "::Macintosh_Folder:DOSfile" with its
full path.

Rev. 2.0 2-65

Target Service API

2. Rename Macintosh_Folder to Mac_Folder.

3. Create folder Macintosh_Stuff.

4. Restore the data set by using its full path information
(for some reason it is placed into directory
"::Macintosh_Stuff").

The data set is misplaced because the data set’s full path is
used to restore it. When "::Macintosh_Folder:DOSfile" is
translated to a DOS path (because the data set’s creator name
space is DOS), the translated path is:

":\MACINTO1\DOSFILE"

Since "::Macintosh_Stuff" also translates to ":\MACINTO1\",
DOSFILE is restored to that directory.

In the second example, the data set is misplaced because its
full path is used and the parent was deleted. The following
events happen ("t" stands for "time"):

t1. An AFP user creates the following directory structure:

::AFP dir:DOSFILE (AFP name space, creator)
:\AFPDIR\DOSFILE (DOS name space equivalent)

t2. "::AFP dir:DOSFILE" is backed up.

t3. The entire directory structure is deleted.

t4. A DOS user creates the following directory:

:\AFPDIR\ (DOS name space, creator)
::AFPDIR: (AFP name space equivalent)

t5. A DOS file "DOSFILE" is created under ":\AFPDIR\".

t6. Restore the data set using its full path; however it is
placed into the directory, "\AFPDIR\", created at t4
instead of "\AFPDIR0\", its real parent, which was
created at t1.

The data set is misplaced because the restoration process
follows this rule:

"Restore all data sets to the same location within the
name space that created them when full paths are used."

This is how the data set is misplaced. To restore the data set,

2-66 Rev. 2.0

Function Description

its full path "::AFP DIR:DOSFILE" is retrieved and compared
to the target’s directory structure. Since the parent does not
exist, it is recreated under the AFP name space as
"::AFP DIR:". Notice that its DOS equivalent name is now
"\AFPDIR0\" (the ordinal DOS name is taken by
"\AFPDIR\" which was created at t4). Next, since the data
set is a DOS data set, its full path is translated to
"\AFPDIR\DOSFILE". Notice that this path places the data
set into the directory created at t4 not its parent
’\AFPDIR0\".

To avoid the problems depicted in both examples, we
recommend that parent handles be used.

To close the data set, call NWSMTSCloseDataSet.

Example

/* This example uses the information on the media to restore the data set instead
of a log or a database that contains the serviced data sets. If you are not
using SDI, substitute your media calls for SDI’s */

UINT32 parentHandle, mode = NWSM_OVERWRITE_DATA_SET, dataSetHandle;
NWSM_RECORD_HEADER_INFO recordHederInfo;

/* Connect to SDI and the media, set up the transfer buffer */
. . .

/* initialize record header info, we want the function allocate scanInformation
for us. */

recordHeaderInfo→scanInformation = NULL;

/* Here we assume that there are not subrecords and that each record occupies one
transfer buffer. */

while(SDI returns a transfer buffer)
{

/* Move the transfer buffer pointer to the first record */
. . .

/* Now get the record header information from transfer buffer */
NWSMGetRecordHeader(&transferBuffer, transferBufferSize, recordHeaderInfo);

/* prepare the data set for restoration */
NWSMTSOpenDataSetForRestore(connection, parentHandle, NULL, mode,

&dataSetHandle);

/* Now we write the data to target. NWSMGetRecordHeader moved the transfer
buffer pointer to the data set data, so we just pass that pointer to the
function below. The FID functions discussed in the Storage Management
Services Utilities Library document can be used to look at the fields and
sections.*/

NWSMTSWriteDataSet(connection, dataSetHandle, recordHeaderInfo.recordSize,
transferBuffer);

/* Close the data set and get the next transfer buffer. */
NWSMTSCloseDataSet(connection, &dataSetHandle);

}

free(recordHeaderInfo→scanInformation);

Rev. 2.0 2-67

Target Service API

See Also
NWSMTSOpenDataSetForBackup
NWSMTSCloseDataSet
NWSMTSSetRestoreOptions
NWSMTSWriteDataSet

2-68 Rev. 2.0

Function Description

CCODE

NWSMTSWriteDataSet
(UINT32 connection,

UINT32 dataSetHandle,

UINT32 bytesToWrite,

BUFFERPTR buffer);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

dataSetHandle (INPUT) Passes the handle returned by

NWSMTSOpenDataSetForRestore.

bytesToWrite (INPUT) Passes the number of bytes to write.

buffer (INPUT) Passes the buffer to write from. The information contained

in buffer is the data set data contained in the transfer buffer

retrieved from SDI (see System Independent Data Format and

Storage Device API for more information about the data set data

and transfer buffers).

Completion Codes

0x0 Successful

0xFFFDFFB5 NWSMTS_WRITE_ERROR

0xFFFDFFB6 NWSMTS_WRITE_ERROR_SHORT

0xFFFDFFB7 NWSMTS_WRITE_EA_ERROR

0xFFFDFFB8 NWSMTS_VALID_PARENT_HANDLE

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC4 NWSMTS_SCAN_ERROR

0xFFFDFFC6 NWSMTS_READ_ERROR

0xFFFDFFC8 NWSMTS_OVERFLOW

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFCA NWSMTS_OUT_OF_DISK_SPACE

0xFFFDFFCC NWSMTS_OPEN_ERROR

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFE5 NWSMTS_INVALID_DATA_SET_HANDLE

0xFFFDFFE6 NWSMTS_INVALID_DATA

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFDFFEC NWSMTS_GET_ENTRY_INDEX_ERR

0xFFFDFFEF NWSMTS_EXPECTING_TRAILER

Rev. 2.0 2-69

Target Service API

0xFFFDFFF0 NWSMTS_EXPECTING_HEADER

0xFFFDFFF3 NWSMTS_DATA_SET_IS_OLDER

0xFFFDFFF5 NWSMTS_DATA_SET_IN_USE

0xFFFDFFF7 NWSMTS_DATA_SET_EXCLUDED

0xFFFDFFF8 NWSMTS_DATA_SET_ALREADY_EXISTS

0xFFFDFFF9 NWSMTS_CREATE_ERROR

0xFFFDFFFA NWSMTS_CREATE_DIR_ENTRY_ERR

0xFFFDFFFB NWSMTS_CLOSE_BINDERY_ERROR

0xFFFDFFFC NWSMTS_CANT_ALLOT_DIR_HANDLE

0xFFFDFFFD NWSMTS_BUFFER_UNDERFLOW

0xFFFDFFFF NWSMTS_ACCESS_DENIED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
NWSMTSOpenDataSetForRestore opened the data set.

TSA Developers
This function deformats the data set data and writes it out to
the target. The FID functions described in Storage
Management Services Utilities Library can be used to
deformat the data set data.

SME Developers
The FID functions described in Storage Management Services
Utilities Library can be used to deformat the data set
information if needed.

Remarks
This function writes the data to the specified data set and
may continue the validation of dataSetHandle (see
NWSMTSOpenDataSetForRestore for more information
about validation). Since this function may continue the
validation of dataSetHandle
NWSMTS_VALID_PARENT_HANDLE or
NWSMTS_DATA_SET_ALREADY_EXISTS may be returned
(see NWSMTSOpenDataSetForRestore for more
information about validation).

2-70 Rev. 2.0

Function Description

In other words, if the restore mode was set to
NWSM_DO_NOT_OVERWRITE_DATA_SET, (set in
NWSMTSOpenDataSetForRestore) the engine must call
NWSMTSWriteDataSet repetitively until a non-zero
completion code is returned. For more information about
restoring data sets see NWSMTSOpenDataSetForRestore’s
remarks.

NWSMTSSetRestoreOptions sets up the selection list used
for the restore session and also indicates whether
NWSMTSWriteDataSet should look at the selection list.

See Also
NWSMTSOpenDataSetForRestore
NWSMTSSetRestoreOptions

Rev. 2.0 2-71

Target Service API

Connection Termination Functions

CCODE

NWSMTSReleaseTargetService
(UINT32 *connection);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFD6 NWSMTS_LOGOUT_ERROR

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

Remarks
NWSMTSReleaseTargetService releases a connection
between the engine and the target service after a session is
terminated or completed.

See Also
NWSMTSConnectToTargetService

2-72 Rev. 2.0

Function Description

CCODE

NWSMReleaseTSA
(UINT32 *connection);

Parameters

connection (INPUT) Passes the address of a UINT32 that contains the

connection information that NWSMConnectToTSA returned.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

Prerequisites
The target service must be released before this function is
called.

Remarks
NWSMReleaseTSA releases the connection between the
engine and the TSA. There is only one engine/TSA pair for
each session, therefore it is not necessary to specify the TSA
when releasing the connection. connection is set to an invalid
value after the connection is released.

See Also
NWSMConnectToTSA

Rev. 2.0 2-73

Target Service API

Miscellaneous Functions

CCODE

NWSMTSCloseDataSet
(UINT32 connection,

UINT32 *dataSetHandle);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

dataSetHandle (INPUT/OUTPUT) Passes the address of the data set handle that

NWSMTSOpenDataSetForBackup or

NWSMTSOpenDataSetForRestore returned.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFE5 NWSMTS_INVALID_DATA_SET_HANDLE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks
NWSMTSCloseDataSet closes a data set that was opened by

NWSMTSOpenDataSetForBackup or
NWSMTSOpenDataSetForRestore and sets dataSetHandle

to zero. To set the archive status, call
NWSMTSSetArchiveStatus.

Note: Between the time

NWSMTSOpenDataSetForBackup and
NWSMTSCloseDataSet are called, it is the TSA’s
responsibility to ensure that the data set’s attributes (e.g.,
last access date and time) are not altered (i.e., the access
for back up is transparent).

See Also
NWSMTSOpenDataSetForBackup
NWSMTSOpenDataSetForRestore
NWSMTSSetArchiveStatus

2-74 Rev. 2.0

Function Description

CCODE

NWSMFreeNameList - A Utility Fn
(NWSM_NAME_LIST **nameList);

Parameters

nameList (INPUT) Passes a pointer to a name list to be freed.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

Remarks
NWSMFreeNameList frees the memory allocated by
NWSMTSListTargetServices, NWSMTSListTSResources,

NWSMTSListSupportedNameSpaces, and
NWSMListTSAs. nameList is set to null upon successful
completion.

nameList uses the following data structure:

typedef struct _NWSM_NAME_LIST
{

struct _NWSM_NAME_LIST *next;
STRING name;

} NWSM_NAME_LIST;

See Also
NWSMTSListTSResources
NWSMTSListTargetServices
NWSMTSListSupportedNameSpaces
NWSMListTSAs

Rev. 2.0 2-75

Target Service API

CCODE

NWSMTSCatDataSetName
(UINT32 connection,

UINT32 nameSpaceType,

STRING dataSetName,

STRING terminalName,

NWBOOLEAN terminalNameIsParent,

STRING_BUFFER **newDataSetName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

nameSpaceType (INPUT) Passes the data set’s name space type.

dataSetName (INPUT) Passes the data set name (e.g., path) to append to.

terminalName (INPUT) Passes the data set name (parent or child) to be appended.

terminalNameIsParent (INPUT) If set, terminalName is a parent.

newDataSetName (OUTPUT) Returns the concatenated data set name. If

terminalName is a parent, and if the target service requires it, a

separator is placed at the end of newDataSetName. Call

NWSMFreeString to deallocate newDataSetName (see Storage

Management Services Library).

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Prerequisites
None

Remarks
This function appends a terminal node name (i.e., a child or a
parent) onto an existing data set name (path).
newDataSetName must point to a valid structure or null. The
function allocates memory if a null is passed or if the
structure does not have enough space.

2-76 Rev. 2.0

Function Description

CCODE

NWSMTSParseDataSetName
(UINT32 connection,

UINT32 nameSpaceType,

STRING dataSetName,

UINT16 *count,

UINT16_BUFFER **namePositions,

UINT16_BUFFER **separatorPositions);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

nameSpaceType (INPUT) Passes the data set’s name space type.

dataSetName (INPUT) Passes the data set name to be parsed.

count (OUTPUT) Returns the number of nodes and separators in

dataSetName.

namePositions (OUTPUT) Returns an array of indexes containing the beginning of

each node in dataSetName . Call free to deallocate namePositions.

separatorPositions (OUTPUT) Returns an array of indexes containing the beginning of

each separator in dataSetName . Call free to deallocate

separatorPositions.

Completion Codes

0x0 Successful

0xFFFBFFFB NWSMUT_OUT_OF_MEMORY

0xFFFBFFFC NWSMUT_NO_MORE_NAMES

0xFFFBFFFD NWSMUT_INVALID_PARAMETER

0xFFFBFFFF NWSMUT_INVALID_HANDLE

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFE0 NWSMTS_INVALID_NAME_SPACE_TYPE

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks
NWSMTSParseDataSetName parses a data set name and
returns the number of nodes and separators, and a list of
indexes to each node and separator, see
"NWSM_DATA_SET_NAME_LIST" in Appendix B for more
information.

Rev. 2.0 2-77

Target Service API

This function uses the following structure:

typedef struct
{

UINT16 size;
UINT16 buffer[1];

} UINT16_BUFFER;

size contains the size of the UINT16_BUFFER structure in
words not the size of buffer.

2-78 Rev. 2.0

Function Description

CCODE

NWSMTSSeparateDataSetName
(UINT32 connection,

UINT32 nameSpaceType,

STRING dataSetName,

STRING_BUFFER **parentDataSetName,

STRING_BUFFER **childDataSetName);

Parameters

connection (INPUT) Passes the connection information that

NWSMConnectToTSA returned.

nameSpaceType (INPUT) Passes the data set’s name space type.

dataSetName (INPUT) Passes the data set name to be separated.

parentDataSetName (OUTPUT) Returns the name of the parent data set less the terminal

node name. This parameter can be set to one of three values:

parentDataSetName = null do not return parent name

*parentDataSetName = null allocate memory and return the

parent’s name

*parentDataSetName = address of a buffer

reallocate the buffer if it is too

small and return the parent’s

name

Call free to deallocate parentDataSetName.

childDataSetName (OUTPUT) (Optional) Returns the terminal node. This parameter

can be set to one of three values:

childDataSetName = null do not return child’s name

*childDataSetName = null allocate memory and return child’s

name

*childDataSetName = address of a buffer

reallocate the buffer if it is too

small and return the child’s name

Call free to deallocate childDataSetName.

Completion Codes

0x0 Successful

0xFFFDFFB9 NWSMTS_UNSUPPORTED_FUNCTION

0xFFFDFFC9 NWSMTS_OUT_OF_MEMORY

0xFFFDFFDC NWSMTS_INVALID_PATH

0xFFFDFFE0 NWSMTS_INVALID_NAME_SPACE_TYPE

Rev. 2.0 2-79

Target Service API

0xFFFDFFE7 NWSMTS_INVALID_CONNECTION_HANDL

0xFFFEFFFC NWSMDR_TRANSPORT_FAILURE

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Remarks
This function separates the data set name into a parent and
child. parentDataSetName and childDataSetName must point
to a valid structure or null. The function allocates memory if
a null is passed or if the structure does not have enough
space.

2-80 Rev. 2.0

Function Description

Rev. 2.0 2-81

